EQUILIBRIUM COMPOSITION OF DETONATION PRODUCTS M. S. Shaw Group T-14, Mail Stop B214 Los Alamos National Laboratory Los Alamos, New Mexico 87545 A new Monte Carlo simulation method has been developed by the author which gives the equilibrium chemical composition of a molecular fluid directly. The usual NPT ensemble (isothermal-isobaric) is implemented with N being the number of atoms instead of molecules. Changes in chemical composition are treated as correlated spatial moves of atoms. Given the interaction potentials between molecular products, "exact" (with statistical error $\approx 1\%$) EOS points including the equilibrium chemical composition can be determined from the simulations. This method is applied to detonation products at conditions in the region near the Chapman-Jouget state. For the example of NO, it is shown that the CJ detonation velocity can be determined to a few meters per second. A rather small change in cross potentials is shown to shift the chemical equilibrium and the CJ conditions significantly. #### DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express a implied, or assumes any legal hability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its end insement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. # INTRODUCTION The equation of state (EOS) of high explosives detonation products is a crucial part of any calculation of the behavior of reacting explosives and its effect on adjacent mert materials. In principle, one could calculate an *ub mitio* EOS by first using quantum mechanics methods for the potentials between molecular products and second using statistical mechanics for the resulting EOS given these potentials. The first step is limited by the accuracy of available quantum mechanics methods and the required computer time. Where available, these potentials are qualitatively accurate rather than quantitative. Given an accurate method for the second step of statistical mechanics, however, the potentials can be refined from the evaluation of experimental data. This second step is typically evaluated using thermodynamic perturbation theories. For a single molecular species interacting through a spherical potential, there are several quantitative methods in use. The precision for these methods is not well characterized for multiple species mixtures such as occur in detonation products. In particular, equilibrium chemical composition and possible fluid-fluid phase segregations can have substantial influence on the total EOS of these mixtures. In addition to approximate perturbation theories, there are simulation methods such as Monte Carlo and molecular dynamics which are essentially exact except for small (less than 1%) statistical error. These methods are well established for P. V. T. and E. However, quantities such as free energies, entropy, and chemical potentials are much more difficult to calculate. By standard simulation methods, the chemical equilibrium composition of a multi-component mixture would be nearly intractable. The Metropolis Monte Carlo method¹ has been the basis for a wide variety of simulation methods for statistical mechanics. Some of the properties requiring the most effort to evaluate accurately are those related to free energies, e. g. chemical potentials, phase equilibrium, and chemical equilibrium. Recently, Panagiatopoulos^{2,3} has introduced the Gibbsensemble Monte Carlo which allows for the evaluation of gas liquid phase equilibria directly without the intermediate calculation of chemical potentials. Coker and Watts⁴ and Kofke and Glandt⁵ have used modifications of Grand Canonical ensemble Monte Carlo to determine the chemical equilibrium composition of molecular fluid mixture. Sindzingre et. at.^{6,7} have shown that chemical potential differences individual chemical potentials through their 'difference method'. This generalization of a method by Shing^{8,9} involves an interchange of one particle type for another rather than the addition or removal of a particle. The author has recently developed a Monte Carlo simulation method ^{10,11} which allows for chem ical equilibration as a natural part of a single simulation. (This method is designated $N_{stams}PT$ ensem ble Monte Carlo since the number of atoms is held constant). Starting from an atomic rather than a molecular viewpoint, the equilibrium chemical composition of a molecular fluid mixture is evaluated without explicit calculation of chemical potentials. The partition function for this collection of atoms is rewritten as a sum over all molecular partition functions consistent with this set of atoms. That is, each set of atoms can be grouped into a variety of sets of molecules. Each set of molecules has its own molecular partition function which contributes to the total atomic partition function. That part of the atomic partition function which does not match up atoms into molecular groups is completely negligible for the region of interest For this particular study we will concentrate on a common approximation to the molecular par tition function which treats each molecule as a sin gle particle with internal degrees of freedom such as vibration and rotation. Instead of restricting this simulation to a given set of molecules, we allow for changes of in the set of molecules corresponding to an exchange of atoms. In the $N_{atoms}PT$ ensemble Monte Carlo simulation, the chemical reaction steps are for an interchange of atoms between molecules. This step is treated like any other Monte Carlo step except that the acceptance probability is more complicated to evaluate. Note that this correlated move is like a "teleporter" from one likely configuration to another likely configuration. For most chemical reactions, the barrier between these two configura tions as so high that a direct route involving a series of small changes in configuration would pass through very unlikely states. Hence, the correlated move allows for efficient, snapling of a configuration space that have land of locally high probability operated by regions of low probability. A further complication as that of reactions incoloring a change in the number of molecules. The bookkeeping a triplified by fixing the total number of particles in the annulation but allowing for a vea dde namber of them to be noming teracting be the remain this may matheil a mailied to example is that of $N_2 + O_2 \rightleftharpoons 2NO$ at 30GPa and 3000K. Variations in the cross-potentials (i.e. between unlike species) are shown to cause significant shifts [1] the equilibrium composition. For a 50/50 mix of N and O, a few percent shift in the distance scale of cross potentials leads to an equilibrium mole fraction of NO varying from 8/40%. On the other hand, the Lorentz-Berthelot rules for choosing cross potentials gives chemical equilibrium that is almost exactly reproduced by the ideal mixing approximation. Another example is the accurate determination of the CJ state. This involves the simulation of $N_2 + O_2 \neq 2NO$ for a variety of P and T near the CJ point. The Hugoniot is constructed by interpolation of appropriate EOS points. The Hugoniot is plotted in u_* vs. u_p space to search for the minimum shock velocity. The ancertainty of the detonation velocity from the method is shown to be a few meters per second. The effect of the cross potentials on the detonation velocity is shown to be significant. # METHOD The classical partition function for the atomic canonical ensemble, with all atoms identical, is just $$Q(N, V, T) = \frac{\Lambda_{-N}^{-N}}{N!} Z(N, V, T), \tag{1}$$ where N is the number of atoms, A is the de Broglie thermal wavelength and $Z(N, V, \Gamma)$ is the configuration integral given by $$\frac{\mathcal{Z}(N, V, T)}{\int e_{\tau} p_{\tau}^{r} \left(U(\mathbf{r}_{1}, \dots, \mathbf{r}_{N}) d\mathbf{r}_{1} - d\mathbf{r}_{N}\right)}$$ (2) With X different types of atoms, X_i atoms of type i, and a total of $X_i = \sum_i X_i$ atoms of all types the partition function becomes $$\frac{Q(N_1, N_2, \dots, N_4, I, I)}{N_1^{-1/N_1} - N_4^{-1/N_1}} \frac{N_4(N_4, I, I)}{N_4^{-1/N_1} - N_4(I, I, I)}$$ (3) Lilewise, the partition function for a molecular mixture, within the approximation of aparable molecular internal degrees of freedoms on by existence $$\begin{array}{lll} (\mathcal{J}(M_V) & M_H(V, I)) \\ & \mathcal{J}(M_V) & M_H(V, I) & & & \\ & & & & & \\ \end{array} \tag{4}$$ tion, such a vibration and rotation, which correspond to an isolated molecule. Eq. (4) is the restriction (e.g. the rigid rotor-harmonic oscillator approximation) of Eq. (3) to chose atomic coordinates which correspond to the chosen molecular mixture composition. Now we can relax this restriction slightly to include any set of atomic coordinates which corresponds to any set of $M_I's$ which preserves the atomic compositions. Those atomic coordinates associated with each set of $M_I's$ can be separately approximated by Eq. (4) and the integral over all coordinates allowed by the relaxed restriction becomes a sum of the form $$\frac{Q(N_1, \dots, N_A, V, T)}{\sum_{i=1}^{J} Q(M_1, \dots, M_B, V, T)},$$ (5) where \sum' indicates only those sets of M'_is which preserve the set of N'_is . Note that each set of M'_is samples a different nonoverlapping region of atomic coordinate space due to the different sets of atomic correlations which define the molecules. The atomic isothermal isobaric ensemble partition function is $$N(N_1, \cdots, N_A, P, T) = \int_0^\infty \exp(-\beta PV) Q(N_1, \cdots, N_A, V, T) dV.$$ (6) A Morate Carlo simulation can be made in these ensembles if a type of move between nonoverlapping regions can be found which is reasonably likely. This can be accomplished by interchanging atoms between molecules. In the general case, the number of molecules could change. Let M denote the total number of molecules, i.e. $M = \sum_{i=1}^{R} M_i$. A change of varibles to a reduced distance segiven by $$\mathbf{s}_{i} = \mathbf{V} + i\mathbf{e}_{i} \tag{7}$$ which has the normalization $$\int d\mathbf{s}_{i} = 1 \tag{8}$$ Fach molecular Q can be rewritten as $$\frac{Q(M_t) - M_{tt} + I_{tt}}{V_{tt}^{M_t} - M_{tt}^{M_t}} = \frac{M_{tt}}{M_{tt}^{M_t}} = \frac{M_{tt}}{V_{tt}^{M_t}}$$ (9) that $M' \geq M$ for all molecular compositions of interest. Then Eq. (6) becomes $$\Delta(N_1, \dots, N_A, P, T) = \int_0^\infty \int \sum_{i=1}^{N} e^W dV d\mathbf{s}_1 \cdots d\mathbf{s}_M \cdots d\mathbf{s}_{M^i},$$ (10) where $$W(\mathbf{s}_{1}, \dots, \mathbf{s}_{M}, M_{1}, \dots, M_{B}) =$$ $$+ \beta_{1}U(\mathbf{s}_{1}, \dots, \mathbf{s}_{M}) + PV] + MlnV$$ $$+ \sum_{i=1}^{B} [M_{i}(lnq_{i} - 3ln\Lambda_{i}) - ln(M_{i}!)].$$ (11) Note that the first two terms on the righthand side are just those of an NPT ensemble with fixed molecular composition. A Markov chain giving a limiting distribution proportional to e^W is then obtained by accepting a move from state r to states s with the probability P_{r+s} given by $$P_{t-1} = Min[1, exp(W_{\tau} - W_{t})]. \tag{12}$$ This assumes the usual condition $p_{r\to r} = p_{s\to r}$ where the p's indicate the unweighted probability of a move. It is sometimes convenient to relax this condition so that a low probability move is tried less often with a higher chance of being accepted when it is tried. We still want the net flow from $r\to s$ to be the same as $s\to r$ at the required distribution. The condition $$exp(W_{\epsilon})p_{\epsilon\rightarrow \bullet}P_{\epsilon\rightarrow \bullet} = exp(W_{\bullet})p_{\bullet\rightarrow \bullet}P_{\bullet\rightarrow \bullet}, \qquad (13)$$ leads to the choice $$P_{t+1} = Min(1 + exp(W_t - W_t)p_{t+1}, p_{t+1})$$ (14) We now have to evaluate the answershted probabilities of moves for a specific scheme of choosing chemical reactions. The bookkeeping is somewhat easier to follow if we do not keep track of labels for a particular molecule. That is, only the set of positions, \mathbf{s}_i and corresponding molecule type t_i at each position are it of to characterize a state. This indistinguishability of molecules of are given type cancels the InM_i terms from Eq. (2) which were originally included to take into account and rare in Lambity in molecules allowed in the simulation, let each positive integer through in denote one molecule type. Also, let t=0 be a null particle which keeps track of the extra integration variables introduced in Eq. (9). A given chemical reaction can be written in the form $$\sum_{t=0}^{m} v_t F_t = \sum_{t=0}^{m} \xi_t F_t. \tag{15}$$ where F_t is the formula for molecule t. For example, the reaction $2CO + O_2 \rightleftharpoons 2CO_2$ would be characterized by $F_0 = \text{mull}$, $F_1 = CO$, $F_2 = O_2$, $F_3 = CO_2$, $v_0 = 0$, $v_1 = 2$, $v_2 = 1$, $v_3 = 0$, $\xi_0 = 1$, $\xi_1 = 0$, $\xi_2 = 0$, $\xi_3 = 2$. Likewise, $N_2 + O_2 \rightleftharpoons 2NO$ would be characterized by $F_0 = \text{mull}$, $F_1 = N_2$, $F_2 \rightleftharpoons O_2$, $F_3 \rightleftharpoons NO$, $v_0 = 0$, $v_1 = 1$, $v_2 \rightleftharpoons 1$, $v_3 + 0$, $\xi_0 = 0$, $\xi_1 = 0$, $\xi_2 = 0$, $\xi_3 = 2$. For a given simulation, one or more chemical reactions can be included at fixe; or random intervals in the same way that occasional volume changes are included in a standard NPT ensemble simulation. For convenience, we pick a reaction at random after a fixed number of Monte Carlo steps. For a given state r, the number of ways to choose a forward reaction is given by $$N_I(r) = \prod_{t=0}^m \binom{M_t}{\nu_t}. \tag{16}$$ Similarly, the backward reaction has a number of choices given by $$N_{b}(r) = \prod_{t=0}^{m} \left(\frac{M_{t}}{\xi_{t}}\right). \tag{17}$$ For a given chemical reaction step, we choose the forward path with probability $\frac{N_{t+N_{t}}}{N_{t+N_{t}}}$ and the backward reaction with probability $\frac{N_{t+N_{t}}}{N_{t+N_{t}}}$. Then the reactants are chosen randomly from the available molecules of the proper type. This is equivalent to choosing $v = \sum v_{t}$ particles at random and proceeding with the trial reaction if the set of molecules is that of either ade of Eq. (15). Otherwise, the process is repeated with another set of v particles chosen at random until an acceptable set of particles is found. Let's denote a specific final state for the forward teaction and to a specific final state for the reverse teaction. The final state molecule types are a signed randomly over the choicens particles for the reaction. The number of distinct final states for $\Omega_{\rm h}$ process is $r^4 = \prod r_i^4$ for the forward reaction, and $r^4 = \prod r_i$ for state r to state s is given by $$p_{r+s} = \frac{\prod_{t=0}^{m} \xi_t!}{\nu! (N_t(r) + N_b(r))}.$$ (18) Similarly. $$p_{s-r} = \frac{\prod_{t=0}^{m} r_{t}!}{\nu! (N_{t}(s) + N_{b}(s))}.$$ (19) and consequently $$\frac{p_{t\to r}}{p_{t\to s}} = \frac{\prod_{t=0}^{m} \nu_t! ((N_f(r) + N_b(r))}{\prod_{t=0}^{m} \xi_t! (N_f(s) + N_b(s))}$$ (20) and likewise for the reverse reaction $$\frac{p_{t-t}}{p_{t-t}} = \frac{\prod_{t=0}^{m} \xi_t! (N_f(r) + N_b(r))}{\prod_{t=0}^{m} v_t! (N_f(t) + N_b(t))}.$$ (21) The acceptance probabilities for a chemical reaction move are obtained from a combination of Eq.(11), Eq.(14), Eq.(20), and Eq.(21). These can be compared with a specific case given in reference 10. For spatial moves not involving a chemical reaction, the usual canonical ensemble probabilities are used. In the isothermal isobaric cusemble, moves in volume are also allowed in the standard fashion. ## RESULTS Monte Carlo simulations have been performed in the atomic isothermal isobaric ensemble using the method described above. A series of simulations have been made with nitrogen/oxygen mixtures at high P and T. Allowed molecular species are N_2, O_2 , and NO. The contribution to W from q_i , and Λ_i 's is given using molecular constants and expressions found in McQuarrie12 and supplemented with electronic level constants (13,14). The molecular constants used for this evaluation are given in Table 1. M is the molecular weight, O, is the characteristic rotational temperature, σ is the symmetry number, Θ_{ν} is the vibrational temperature, D_0 is the energy difference between the lowest subrational level and the discciated molecule ϵ_i is the ith electronic energy level. and ω_i is the degeneracy of the ith level. Only those electronic level, which contribute at $T < 5000 { m K}$ are included. Note that conversion factors for the units melude keal, mole | 503 22 k and 2 k | 0.695026cm | 1. Initial conditions are a random set of positions for 190 molecules. Only No and O_2 molecules are | symbol | <u>V</u> | <u>()</u> 2 | <u>NO</u> | |-------------------------------|----------|-------------|-----------| | 11. | 28.0134 | 31.988 | 30.0007 | | $\Theta_r(K)$ | 2.88 | 2.07 | 2.45 | | σ | 2 | 2 | 1 | | $\Theta_V(K)$ | 337-4 | 2256 | 2719 | | D_0 (kcal/mol) | 225.1 | 118.0 | 150.0 | | ⊸ 1 | 1 | 3 | 2 | | $\epsilon_1(\epsilon m^{-1})$ | U | U | Ü | | ر س | 3 | 2 | 2 | | $\epsilon_2(cm^{-1})$ | 49754.78 | 7882.39 | 119.82 | | ~ `₁ | | 1 | 8 | | $\epsilon_3(cm^{-1})$ | | 13120.91 | 38440. | | ₩ 4 | | 1 | | | $\epsilon_4(cm^{-1})$ | | 32664.1 | | TABLE 2. EXPONENTIAL-SIX POTENTIAL PARAMETERS FOR THE BASE CASE. | #_ | Species | $\epsilon(K)$ | $r^*(A)$ | (1 | |----|--------------|---------------|----------|---------| | 1 | $N_2 - N_2$ | 75. | 4.251 | 13.474 | | 2 | $N_2 - ()_2$ | 7 5. | 4.1805 | 13.2955 | | 3 | $N_2 - NO$ | 93.715 | 4.123 | 12.777 | | 4 | $O_2^ O_2^-$ | 75. | 4.110 | 13.117 | | 5 | $O_2 - NO$ | 93.715 | 4.0525 | 12.5985 | | 6 | NO - NO | 117.1 | 3.995 | 12.08 | FIGURE 1 POTENTIALS , (K) VERSUS RADIUS $R(\Lambda)$ FOR THE BASE CASE allowed in the initial configuration. The potentials are of the exponential six form, $\phi = \epsilon(6exp(\alpha(1-r/r^*)) - \alpha(r/r^*)^{-6})/(\alpha - 6)$, with parameters given a section of the constant of molecules are chosen to fit shock wave data¹⁵. The cross potentials for the baseline case are given by the Lorentz-Berthelot rules and the arithmetic mean for α 's. Variations in the cross potentials are labeled in Table 3. Runs of 10^{6} steps were made with the first 2×10^{5} steps ignored for the purpose of evaluating averages of quantities. Atomic exchanges were attempted every 37 steps and volume changes every 120 steps. Figure 2 shows results from a previous paper for P=30GPa and T=3000K to illustrate the substantial effect of cross potentials on the equilibrium composition. Comparison is made with perturbation theory using ideal mixing. The relatively small differences in potentials leads to an accurate representation with ideal mixing for the baseline set of potentials. Other choices for cross potentials lead to significantly different equilibrium compositions. Note that since the potentials between like molecules are not changed, the ideal mixing composition is also unchanged. In this study we have expanded the set of calculated states to inc' ide the region near the CJ conditions for the deconation of liquid NO. This is the first time a CJ state has been calculated by an (esscritially) exact method such as a Monte Carlo simulation. The simulation results for the base set of potentials is given in Table 4. The same set of P and T points for the A set of potentials is given in Table 5. Units used in the tables are P(Mbar), T(K), $V(cm^3/g)$, $E(Mbar, cm^3/g)$, and u(m/s). Statistical uncertainties from the Monte Carlo simulations are E.F. 00007, V $\pm .00040$, $\alpha_s \pm 7$, $\alpha_p \pm 2$, and $\alpha_{NO} \pm .002$ where \mathbf{x}_{NO} is the mole fraction of NO in the products. Note that in these tables the difference be tween the specific internal energy of a state and the corresponding energy on a Higemot (E_H) ${}^1_*P(V_0\circ V)$ (is given. The initial conditions are taken as ho_0 =1.294 g/cm 3 and F_0 =19/03 kcal/mol/relative (ϵ/N_2) and O_2 at $(\Gamma/0)$ and $(\Gamma/0)$. The simulation data is plotted in Figure 3 in the form V versus Γ . With the help of the table, grouping of data at a give value of P are readily identified. Note that the base case and the A case are agmificantly hifted relative to one another. Some of the apparent similar values between set are actually from different values of P The interpolations to give the Hugomot are shown in Table 6 and Table i. The care alternal independence for or PX to a_i, a_p from the tandard for untlact, $A_0 \sqrt{\sqrt{-P_i}}$ and $a_p = \sqrt{(P - P_i)(V_0 - V_0)}$ and conversion to units of meters per second. The | Lal
ba | ase
A
B
C
D
E
F | $\frac{N_2 - O_2}{2}$ $\frac{2}{1}$ $\frac{2}{2}$ $\frac{4}{2}$ | $ \begin{array}{r} N_2 - NO \\ \hline 3 \\ 3 \\ 6 \\ 6 \\ 3 \\ 3 \\ 1 \end{array} $ | $\frac{O_2 - NO}{5}$ $\frac{5}{5}$ $\frac{5}{5}$ $\frac{5}{4}$ | |---------------------|-----------------------------------|---|---|--| | | 0.5 | | · · · · · · · · · · · · · · · · · · · | | | MOLE FRACTION OF NO | 0.4 | - | A C D | Α - | | 0 | 0.3 | - | X | - | | FRACT | 0.2 | A | X | X A X A | |)LE | 0.1 | × | E | X | | Ĭ | 0.0 | 0 0.2
ATOM | 0.4 0
FRACTIO | | FIGURE 2 EQUILIBRIUM MOLE FRACTION OF NO VS. THE ATOMIC FRACTION OF O AT 3000K AND 30GPA. BASE SET OF POTENTIALS X, SETS A-F AS LABELED, AND PERTURBATION THEORY. u_{\bullet} vs. u_p data are shown in Figure 4 along with least square fits of a quadra beto the data. Note that the small change in cross potentials leads to almost $100 \, \mathrm{m/s}$ difference in detonation velocities. This change is due to a combination of changes in the EOS per se and changes in the equilibrium composition for the products. #### DISCUSSION We have demonstrated a new method for the calculation of the CJ state of an explosive using a set of Monte Carlo simulations giving directly the equilibrium chemical composition. A general derivation has been given which allows for multiple species, multiple chemical reactions, and reactions involving FIGURE 3 VOLUME VS. TEMPERATURE AT VARIOUS VAL-UES OF P. a change in the total number of moles. The precision of the detonation velocity is a few meters per second for reasonable length simulations. Future application will be made of the method to more standard explosives. The extension of the method to the inclusion of solid products such as carbon is straightforward. Likewise, the method is easily extended to include fluid-fluid phase segregation (e.g. oil and water) utilizing the Gibbs ensemble method² as has already been demonstrated¹⁶. The net result of this combination of methods will be to allow essentially exact calculation of detonation products EOS and CJ conditions for any given set of intermolecular potentials with a given free energy representation of solid products. ## **ACKNOWLEDGEMENTS** This work is supported by the U. S. Dopartment of Energy. ### REFERENCES - N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21 (1953) 1087. - A. Z. Panagiatopoulos, Mot. Phys. **61** (1987) 813. | <u> </u> | <u>T</u> | <u>E</u> | 7. | $E \cdot E_H$ | X20 | |----------|----------|----------|--------|---------------|--------------| | .080 | 2400 | .031918 | .61986 | 00074 | .056 | | .080 | 2500 | .033104 | .62307 | .00058 | .059 | | .080 | 2600 | .034778 | .62628 | .00238 | 079 | | .090 | 2400 | .033237 | 59617 | 00125 | .063 | | .090 | 2500 | .034471 | .59918 | .00012 | .067 | | .090 | 2600 | .035851 | .60159 | .00161 | .078 | | .090 | 3000 | .041297 | .61444 | .00763 | .115 | | .095 | 2400 | .033759 | .58553 | 00168 | .060 | | .095 | 2500 | .035219 | .58734 | 00013 | .072 | | .095 | 2600 | .036588 | .59055 | .00139 | .083 | | .100 | 2400 | .034418 | .57449 | .00204 | .06 3 | | .100 | 2500 | .035701 | .57830 | 00056 | .070 | | .100 | 2600 | .037034 | .58091 | 00000 | .079 | | .105 | 2400 | .034761 | .56586 | 00264 | .058 | | .105 | 2500 | .036359 | .56807 | 00093 | .075 | | .105 | 2600 | .037709 | 57128 | .00059 | .086 | | .110 | 2500 | .037045 | .55964 | 00122 | .080 | | .120 | 2400 | .036815 | .54117 | 00362 | .070 | | .120 | 2500 | .038112 | .54478 | 00211 | .079 | | .120 | 2600 | .039596 | 54579 | 00057 | .095 | | .120 | 2700 | .041065 | .54759 | .00101 | .105 | TABLE 5. MONTE CARLO RESULTS FOR THE A SET OF POTENTIALS | P | <u>T</u> | E | 7 | $\mathbf{E}_{\mathbf{H}}$ | XXQ. | |------|----------|---------|--------|---------------------------|------| | .080 | 2300 | .031517 | .62648 | .00088 | .072 | | .080 | 2400 | .032775 | .62929 | .00049 | .078 | | 080 | 2500 | .034277 | .63310 | .00215 | .093 | | .090 | 2400 | .034110 | 60520 | .00003 | .085 | | .090 | 2500 | .035482 | .60761 | .00151 | .095 | | .095 | 2400 | .034770 | .59436 | .00025 | .090 | | .095 | 2500 | .036189 | .59657 | .00128 | .100 | | .100 | 2400 | 035626 | .58272 | .00042 | .098 | | .100 | 2500 | .036777 | .58593 | .00089 | .101 | | .105 | 2400 | 036117 | .57429 | 00085 | .097 | | .105 | 2500 | .037536 | .57730 | .00073 | .108 | | .110 | 2400 | 036862 | 56526 | .00109 | .102 | | U0 | 2500 | 038068 | 56706 | .00021 | .109 | | .110 | 2600 | .039716 | 56987 | .00202 | 127 | | -120 | 2400 | .038268 | .54839 | .00174 | 115 | | 120 | 2500 | .039615 | 5100 | .00023 | 425 | | .120 | 2600 | .041025 | 55301 | .00130 | 135 | ³ A. Z. Pampatopoulos, N. Qiarke, M. Stapleton, and D. J. Tildesley, Mol. Phys. 63 (1988) 527. D. F. Coker and R. O. Warts, Mol. Phys. 44, (1981) 1303. ⁵ D. A. Kofke and E. D. Glandt, Mol. Phys. 64 (1988) 1105. B. D. Sandarana, C. Carratti, C. Marridana, and D. | _ <u>P</u> _ | <u>T</u> | <u> </u> | 7. | 114 | u_p | |--------------|----------|-----------------|----------------|------|-------| | .080 | 2456 | .03259 | .62167 | 5623 | 1100 | | .090 | 2488 | .03438 | .59854 | 5554 | 1252 | | .095 | 2509 | .0 353 1 | .58827 | 5545 | 1324 | | .100 | 2539 | .03566 | .57894 | 5550 | 1392 | | .105 | 2561 | .03719 | .5700 3 | 5561 | 1459 | | .110 | 2581 | .03815 | .56174 | 5579 | 1524 | | .120 | 2636 | .04012 | .54643 | 5627 | 1648 | TABLE 7. INTERPOLATED HUGONIOT FOR THE A SET OF POTENTIALS. | <u> </u> | _ <u>T</u> | <u> </u> | <u></u> | <u>. 11 ,</u> | u | |----------|------------|----------|---------|---------------|------| | .080 | 2370 | .03233 | .62815 | 5747 | 1076 | | .090 | 2398 | .03408 | .60515 | 5662 | 1228 | | .095 | 2416 | .03500 | .59472 | 5644 | 1301 | | .100 | 2432 | .03599 | .58374 | 5620 | 1375 | | .105 | 2454 | .03688 | .57590 | 5643 | 1438 | | .110 | 2470 | .03787 | .56688 | 5648 | 1505 | | 120 | 2516 | .03982 | .55140 | 5690 | 1630 | FIGURE 4 Shock velocity v. particle velocity P. Sindzingre, C. Massobrio, G. Ciccotti, and D. Frenkel, Chem. Phys. 129 (1989) 243 8. K. S. Shing, J. Chem. Phys. 85 (1986) 4633. K. S. Shung, Chem. Phys. Lett. 119 (1985) 149. - Matter 1991, eds. S. U. Schmidt et al. (r.isevier, Amsterdam, 1992), pp.131-134. - 12. Donald A. McQuarie, Statistical Mechanics (Harper & Row, New York, 1976), Chap. 6. - M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, 3rd Edition, J. Phys. Chem. Ref. Data, 14 (1985) Suppl. 1. - K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979). - G. L. Schott, M. S. Shaw, and J. D. Johnson, J. Chem. Phys. 82, 4264 (1985). - J. K. Johnson, A. Z. Panagiatopoulos, and K. E. Gubbins, to be published.